lunes, 1 de diciembre de 2014

Como configurar un servicio DNS en Packet Tracer

Una vez dis1° Abrimos el Packet Tracer y nos dirigimos a la parte inferior izquierda donde se encuentran las herramientas como: PC’s, Servidores, Switch, Routers, Medios de conexión  (Tipo de Cables), etc.


2° Vamos armando nuestra Red así como se muestra en la imagen.
3° Luego hacemos clic en el Servidor DNS, hacemos clic en la Pestaña “Desktop”, y hacemos clic en “IP Configuration” e ingresamos su dirección IP con respecto al mapeo que se realizó anteriormente, tal como se muestra en la imagen:
4° Después ese mismo paso lo repetiremos para configurar su dirección IP de los demás servidores, tal como se muestra a continuación:
Servidor HTTP:
Servidor DHCP:
Servidor EMAIL:
Nota: Aunque en esta red no hay un Router, configuramos ese IP a manera de referencia, aunque si lo quitamos no afectaría a la comunicación entre los diferentes equipos de la Red.
5° Luego de configurar los IP’s de los Servidores empezaremos a configurar el Servidor DNS, para ello haga clic sobre dicho Servidor, haga clic en “Config” y haga clic en “DNS”, tal como se muestra en la imagen:
6° Después en dicha interfaz, en “Name” ingrese una dirección de dominio y en Address ingrese la dirección del Servidor HTTP y luego haga clic en “Add”, tal como se muestra en la imagen:

7° Luego de configurar el Servidor DNS, configuraremos el Servidor HTTP, para ello repetiremos el Paso 5, con la excepción de hacer clic en HTTP, en vez de DNS, tal como se muestra en la imagen:
8° En dicha interfaz, ya nos genera una página html (index.html), el cual la podemos personalizar, modificando el código html, tal como se muestra en la imagen:
Nota: Tener en consideración que al modificar el código html, no agregarle muchas cosas, ya que puede que el simulador no interprete algunas características de una página html.
9° Ahora configuraremos el Servidor DHCP, para ello al igual que la configuración del Servidor DNS, repetiremos el Paso 5, con la excepción de hacer clic en DHCP, en vez de DNS, tal como muestra en la imagen:
10° En dicha interfaz, nos genera una configuración por defecto del Servidor, el cual l reutilizaremos, en “Default Gateway” ingresaremos el IP del Router (Opcional), en “DNS Server” ingresaremos el IP del Servidor DNS, en “Start IP Address” ingresamos el IP inicial que se otorgará a los clientes en la red, en “Subnet Mask” dejamos por defecto ya que no hemos subneteado esta red, en “Maximum number of Users” ingresaremos la cantidad de IP’s que asignaremos, en “TFTP Server” dejamos por defecto, después haga clic en “Save” para guardar los cambios, tal como se muestra en la imagen:
Nota: Desactivar el Servicio de DHCP de los demás servidores, ya que por defecto están activados generando un retraso o conflicto para la asignación de IP’s de nuestro Servidor.
11° Ahora configuraremos el Servidor EMAIL o de Correo, para ello al igual que la configuración de los Demás Servidores repetiremos el Paso 5, con la excepción de hacer clic en EMAIL, en vez de DNS, tal como se muestra en la imagen:
12° En dicha interfaz, en “Domain Name” ingrese el nombre de dominio (Sin ingresar las “www”), luego haga clic en Set, después en “User” ingrese un nombre de Usuario y en “Password” ingrese una contraseña para el usuario, finalmente haga clic en el botón “+”, para añadir el usuario, tal como se muestra en la imagen:
13° Finalmente probaremos el funcionamiento de los Servidores, para ello haga clic en los Clientes (PC’s), luego en “Desktop”, después en “IP Configuration” y haga clic en DHCP, y obtendrá una dirección IP asignada por el Servidor, tal como se muestra en la imagen:
user01:
user02:

14° Luego en uno de los clientes haga clic, después haga clic en “Desktop” y haga clic en “Web Browser”, luego en la URL ingrese la dirección de dominio y haga clic en “Go”, tal como se muestra en la imagen:
15° Por último, configuraremos los clientes con respecto al Servidor de Correo (Email), para ello haga clic en el primer cliente, luego haga clic en “Desktop”, después haga clic en “E mail”, en dicha interfaz ingrese los campos con respecto a la PC y el usuario que corresponda, tal como se muestra en la imagen:
16° Al igual que la configuración anterior, realice la misma configuración con el otro cliente, tal como se muestra en la imagen:
17° Para comprobar la configuración realizada, haga clic en un cliente y diríjase a “E Mail” y haga clic en “Compose”; en “To” ingrese la dirección E mail del destinatario, en “Subject” ingrese el título del mensaje, en el recuadro en blanco de abajo ingrese el contenido del mensaje, y haga clic en “Send”, tal como se muestra en la imagen:
Luego para comprobar la recepción del mensaje haga clic en “receive” en “E mail”, para recibir todos los mensajes recibidos, tal como se muestra en la imagen:
eñada la red se procede a realizar l

Practica de Packet Tracer










REPORTE
En esta practica de packet tracer hicimos una estructura de red, según la practica que nos dio la maestra, solo seguimos los pasos y configuramos el IP y el Gateway para que las maquinas pudieran funcionar correctamente y mandaran los mensajes
lo que aprendí aquí es a mandar los mensajes y verificar los datos que capturamos para cada dispositivo, por medio de la pestaña Desktop ahi hay una opción que se llama Command Prompt, que como lo dice su nombre es para los comandos, escribiendo lo que quieres hacer o consultar te aparecerá lo que buscas y ahi mismo ves si tu red funciona bien o no.
En conclusión esto estuvo fácil por que tuvimos absolutamente todos los pasos explicados y ya echos en nuestro cuaderno.
ya veremos como nos va en la practica, cuando no tengamos la ayuda de esto.

lunes, 3 de noviembre de 2014

Dispositivos de Red

Son todos aquellos que se conectan de forma directa a un segmento de red. Estos dispositivos están clasificados en dos grandes grupos el primero son los dispositivos de usuario final entre los cuales destacan las computadoras, escáneres, impresoras etc. Por otro lado tenemos los dispositivos de red estos dispositivos son los que conectan los dispositivos de usuario final posibilitando la comunicación entre ellos.

Tres funciones principales de las redes:
Comparten información o datos
Comparten hardware y software
Centralizan la administración y el soporte

Haga click en la imagen para verla en grande :)

viernes, 17 de octubre de 2014

Modelo OSI

Concepto del modelo OSI:
 Es el modelo de red descriptivo, que fue creado por la Organización Internacional para la Estandarización (ISO) en el año 1980. Es un marco de referencia para la definición de arquitecturas en la interconexión de los sistemas de comunicaciones.
El Modelo OSI divide en 7 capas el proceso de transmisión de la información entre equipo informáticos, donde cada capa se encarga de ejecutar una determinada parte del proceso global.

El modelo OSI abarca una serie de eventos importantes:

-el modo en q los datos se traducen a un formato apropiado para la arquitectura de red q se esta utilizando
- El modo en q las computadoras u otro tipo de dispositivo de la red se comunican. Cuando se envíen datos tiene q existir algún tipo de mecanismo q proporcione un canal de comunicación entre el remitente y el destinatario.
- El modo en q los datos se transmiten entre los distintos dispositivos y la forma en q se resuelve la secuenciación y comprobación de errores
- El modo en q el direccionamiento lógico de los paquetes pasa a convertirse en el direccionamiento físico q proporciona la red

CAPAS

Las dos únicas capas del modelo con las que de hecho, interactúa el usuario son la primera capa, la capa Física, y la ultima capa, la capa de Aplicación,
La capa física abarca los aspectos físicos de la red (es decir, los cables, hubs y el resto de dispositivos que conforman el entorno físico de la red). Seguramente ya habrá interactuado mas de una vez con la capa Física, por ejemplo al ajustar un cable mal conectado.
La capa de aplicación proporciona la interfaz que utiliza el usuario en su computadora para enviar mensajes de correo electrónico 0 ubicar un archive en la red.

7. Aplicación: En este nivel se define como el usuario accesa a la red.

6. Presentación: En este nivel se define el formato incluyendo la sintaxis del intercambio de los datos entre los equipos.

5. Sesión: En este nivel se organizan las funciones que permiten a 2 usuarios a comunicarse entre si en una misma red.

4. Transporte: En este nivel se define la conexión entre las computadoras transmisoras y receptoras.

3. Red: En este nivel se define la ruta de los paquetes a través de la red hasta su usuario final.

2. Enlace de datos: En este nivel se define como serán transferidos los paquetes de datos entre los usuarios.

1. Físico: Es la capa o nivel donde se define los cables, las computadoras y el tipo de señales.

lunes, 29 de septiembre de 2014

Simulaciones de Redes

Introducción
Este tema es una introducción a los programas simuladores de redes ya que estos también resultan muy importantes en el proceso de aprendizaje de la compleja configuración de los dispositivos de red. En la mayoría de las ocasiones, sobre todo cuando se pretende trabajar con redes de área extensa y de tamaño considerable, no es factible disponer de los propios equipos de interconexión para el aprendizaje, sobre todo por el coste que suponen, el tiempo necesario para su puesta en funcionamiento y los problemas que pueden acarrear si se hace un uso indebido.
Estos simuladores son permiten:
Realizar un diseño de la topología física de la red, usando dispositivos de interconexión, ordenadores y cableado.
Facilitar la configuración de red de los dispositivos que forman parte de ella.
Simular el funcionamiento de esa red, como si los equipos enviaran y recibieran mensajes a través de los protocolos de comunicación.


Simuladores vs. Emuladores
Primero hay que hacer una aclaración hay dos tipos de software bien distintos, simuladores y emuladores. Básicamente un simulador es un programa que trata de tener todas las reglas de funcionamiento de algo y las ejecuta intentando ser realista. El otro tipo de aplicaciones son los emuladores. En el mundo de los videojuegos es muy popular el término y ahora con la masificación de la virtualización también deja de ser extraño el término. Los emuladores, contrario a lo que hacen los simuladores, realmente pueden hacer justo lo que haría la máquina en cuestión. Para ser más precisos, un emulador es una máquina virtual que ejecuta lo que se le ordena exactamente igual que la máquina original. En éste caso, el emulador de enrutadores más conocido es GNS3.

Hay simuladores sin coste y desarrollados por empresas como Network visualizer.
GNS3











GNS3 es un emulador grafico de redes que le permitirá diseñar fácilmente topologías de red. Hasta este momento GNS3 soporta el IOS de routers, ATM/Frame Relay/switchs Ethernet y PIX firewalls.
Usted puede extender su red propia, conectándola a la topología virtual.
Los usuarios de Windows deben instalar el paquete Windows all-in-one
Mas información en www.gns3.net
Es gratis, cubre dispositivos que no cubre el packet tracer, no soporta servidores, necesita los IOS reales (esto si tiene coste).
PACKET TRACER

Es una herramienta les permite a los usuarios crear topologías de red, configurar dispositivos, insertar paquetes y simular una red con múltiples representaciones visuales. Packet Tracer se enfoca en apoyar mejor los protocolos de redes que se enseñan en el currículum de CCNA.
Este producto tiene el propósito de ser usado como un producto educativo que brinda exposición a la interfaz comando – línea de los dispositivos de Cisco para practica y aprender por descubrimiento.
Packet Tracer 5.3 es la última versión del simulador de redes de Cisco Systems, herramienta fundamental si el alumno está cursando el CCNA o se dedica al networking. En este programa se crea la topología física de la red simplemente arrastrando los dispositivos a la pantalla. Luego clickando en ellos se puede ingresar a sus consolas de configuración. Allí están soportados todos los comandos del Cisco IOS e incluso funciona el "tab completion". Una vez completada la configuración física y lógica de la red. También se puede hacer simulaciones de conectividad (pings, traceroutes, etc) todo ello desde las propias consolas incluidas.
Es un programa de simulación muy realista.






































¿COMO CREAS UNA LAN EN PACKET 

TRACER?



1. Abrimos Cisco Packet Tracer 

2. Insertamos 1 servidor, 1 switch y 5 computadoras 
genéricas Servidor Switch Computadoras generias


3. Le ponemos nombre a las computadoras y la conectamos Nombre Conexión de cable


4. Configuramos la ip de cada computadoraRocky 192.168.1.10Balboa 192.168.1.7Ramon 192.168.1.9Cx 192.168.1.95GPL 192.168.1.64 

5. Enviar un ping a la maquina deseada dando clic en Simbolo de Sistema y poniendo ping IPEjemplo: Ping 192.168.1.10



6. Ahora ponemos ipconfig para ver la configuración de la maquina

7. Para finalizar solo oprimimos ipconfig /all para ver a mas detalle la configuración de la maquina

Modos de operación del Packet Tracer
realtimeEl PT opera en modo de tiempo real y simulación, siendo tiempo real el que se muestra inicialmente. Tiempo real significa que los eventos se simulan exactamente como los ejecutarían los dispositivos reales, es decir, si se envía un paquete de un dispositivo a otro eso sucede en milisegundos y lo único que nosotros observamos en el espacio lógico es el piloto (punto verde) del enlace titilar. En éste modo de operación las cosas suceden casi inmediatamente y podemos hacer pruebas en tiempo real como lo haríamos con equipos reales.
Una de las pruebas de conectividad básicas consiste en agregar una PDU simple, que en la interfaz se ve como un sobre con un signo de más ( + ) a un costado. Esta PDU es equivalente a un paquete único de Ping que toma como direcciones origen las del primer dispositivo al que se le da clic y direcciones destino las del segundo dispositivo al que se da clic. Una vez que señalamos el destino de la PDU el paquete se dispara inmediatamente en tiempo real y en el panel de Escenarios aparece una línea indicando lo que le pasa a esa PDU y ofreciéndonos algunas opciones para manipularla. Por ejemplo, cuando soltamos la PDU, si hay redes ethernet/fastethernet involucradas el paquete suele fallar (Failed), para repetirlo sólo hay que dar doble clic en el “botón” rojo al inicio de la línea. En esta misma línea, al final y usualmente fuera de la pantalla (hay que mover la barra de desplazamiento horizontal del panel) se puede dar doble clic a Edit y cambiar parámetros del paquete, por ejemplo decirle que se repita cada X segundos y cambiar los parámetros de origen, lo cual cuando se trabaja con enrutadores -que tienen múltiples interfaces, redes y direcciones diferentes en cada una- puede resultar muy útil. También podemos cambiar a qué aplicación pertenece el paquete, pero eso puede ser complicado si no conocemos los detalles de la aplicación, eso lo exploraremos en los tópicos avanzados. Finalmente el último elemento de la línea que identifica una PDU es Borrar (delete), con lo que se elimina la PDU del listado y del espacio de trabajo.escenario
Si alguien se pregunta para qué sirve entonces el botón Delete y a qué se refiere el botón New, pues es a los escenarios, en pocas palabras conjuntos de paquetes que se envían por la topología. De éste tema hablaremos en futuras entregas pero los invito a que exploren esta función con lo que ya saben.
El modo de simulación es un modo especial en el que se pude observar cómo viajan los paquetes entre los dispositivos. Éste modo permite ver a un alto nivel de detalle lo que pasa en la red y controlar el nivel de detalle que se desea ver, por ejemplo, en una red ordinaria hay muchos protocolos que usan automáticamente los dispositivos para comunicarse información de control, y cada uno genera flujos de paquetes, por lo que con frecuencia es muy importante permitir que sólo los protocolos de interés se vean en una simulación. Obviamente también es importante controlar la velocidad a la que suceden los eventos de la red. El modo de simulación lo exploraremos en detalle en una próxima entrada.
Ventajas y Desventajas del Packet Tracer

Ventajas
*Es una herramienta muy útil para la enseñanza de fundamentos teóricos sobre 
Redes de comunicaciones.
*Posee una interfaz de usuario muy fácil de manejar, e incluye documentación 
y sobre el manejo del mismo.
*Permite ver el desarrollo por capas del proceso de transmisión y recepción de 
paquetes de datos de acuerdo con el modelo de referencia OSI.
*Permite la simulación del protocolo de enrutamiento RIP V2 y la ejecución del 
protocolo STP y el protocolo SNMP para realizar diagnósticos básicos a las conexiones entre dispositivos del modelo de la Red.
Desventajas
*Sólo permite modelar Redes en términos de filtrado y retransmisión de 
paquetes.
*No permite crear topologías de Red que involucren la implementación de
tecnologías diferentes a Ethernet tales como Frame Relay, ATM, XDSL, 
Satelitales, telefonía celular entre otras.
*Ya que su enfoque es pedagógico, el programa se considera de fidelidad 
media para implementarse con fines comerciales

Reglas de Interconexión de Dispositivos
 Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:
Cable Recto:
Siempre que conectemos dispositivos que funcionen en diferente capa delmodelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).
Cable Cruzado:
Siempre que conectemos dispositivos que funcionen en la misma capadel modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub aSwitch/Hub, de Router a Router).
Interconexión de Dispositivos

 Una vez que tenemos ubicados nuestros dispositivos en el escenario y sabemos que tipo de medios se utilizan entre los diferentes dispositivos lo único que nos faltaría ser interconectarlos. Para eso vamos al panel de dispositivos y seleccionamos conecciones y nos aparecerán todos los medios disponibles. Una vez que seleccionamos el medio para interconectar dos dispositivos y vamos al escenario el puntero se convierte en un conector. Al hacer click en el dispositivo nos muestra las interfaces disponibles para realizar conexiones, hacemos click en la interface adecuada y vamos al dispositivo con el cual queremos conectar y repetimos la operación y quedan los dispositivos conectados. Como es difícil de explicar y para una mejor comprensión realicé un video que, además de explicar la interconexión entre dispositivos, resume todo el contenido de este tutorial.


jueves, 25 de septiembre de 2014

Tipo de cables utilizados en redes inalambricas

Las antenas externas se conectan a los equipos wireless mediante un cable. Salvo que sea muy corto, lo normal es que el cable que une el dispositivo wireless con la antena sea un cable de tipo coaxial, similares a los de antena de televisión pero con una impedancia diferente. Hablamos de 50 ohmios en comparación a los 75 ohmios que suelen ser los típicos de televisión. Por lo tanto no valen los cables normales que se usan en los equipos para recepción de la televisión analógica terrestre o digital. Los cables coaxiales se caracterizan porque disponen de un conector central (normalmente denominado activo) rodeado de una malla metálica concéntrica que le protege de las interferencias que son muchas en el campo radioeléctrico en que operan habitualmente las tarjetas y los punto de acceso inalámbricos, El cable de televisión es un buen ejemplo de cable coaxial pero como ya hemos dicho no es valido para redes wireless.
 Para conectar el  cable a la antena y a los dispositivos inalámbricos , se utilizan los conectores. Tanto la antena como algunos equipos wirelessdisponen de un conector donde se deben enchufar sus correspondientes conectores de los extremos de cable. Para poder llevar a cabo esta operación, existen unos conectores conocidos como de tipo macho y otros como de tipo hembra. Es obvio que solo los conectores de distinto sexo pueden conectarse entre si. Por ejemplo, en la antena suele haber como ya hemos dicho anteriormente un conector de tipo hembra y en el cabe, uno de tipo macho. Esto permite conectar el cable a la antena.
 Tanto el cable, como cada conector, añaden perdidas a las señales de radio wireless. Para evitar estas perdidas, aparte de utilizar cables y conectores de calidad. hay que procurar utilizar un cable lo mas corto posible y el numero de conectores imprescindible. El numero de conectores dependerá de las tarjetas y antenas que dispongamos, la calidad dependerá de nuestro bolsillo y la longitud vendrá determinada por el tipo de cable que queramos usar, por lo caro que pueda valer, por la distancia a la antena, en definitiva por su perdida, imaginemos que tenemos una buen antena pero por estar demasiado lejos a la tarjeta wifi y debido a que nuestro presupuesto es limitado el tipo de cable es de los mas malos, posiblemente lleguemos a perder la ganancia obtenida en la antena. Por lo tanto valorar todos estos aspectos. Además intentar evitar en la medida que sea posible utilizar conectores para extender la longitud de cableo para adaptar diferentes tipos de cables o conectores. Reducirlo siempre a la máxima expresión y no hagáis nunca empalmes entre cables, si necesitamos uno mas largo, siempre es mejor adecuar la instalación con un cable nuevo aunque sea de menos perdida y por lo tanto de mayor calidad pero en contraposición mas caro.
Tipos de conectores.
 La utilización de los conectores parece muy sencilla, pero todo se complica por el hecho de que no existe una regulación que especifique como deben ser los conectores. Esto trae consigo que existan muchos modelos distintos de conectores. Algunos muy extendidos como los RP-SMA y otros específicos de un fabricante, los llamados conectores propietarios. Por ejemplo algunos usan conectores TNC, otros BNC, otros SMA y/o RP-SMA (SMA Reverse) y algunos conectores de diseño propio. El hecho se complica aun mas si tenemos en cuenta que el tipo de conector de la antena suele ser distinto del conector de la tarjetas inalámbricas. A partir de cierta potencia suelen ser del tipo N-Hembra.
 La mayoría de los equipos inalámbricos (adaptadores wireless y puntos de acceso, así como los routers inalámbricos, pero recordad que un router inalámbrico no es mas que un router normal al cual se le incorpora internamente un punto de acceso wireless) disponen de un conector para enchufar una antena externa. Los puntos de acceso mayormente viene ya con su propia antena integrada. Y respecto a las tarjetas; Las mas usuales con este tipo de conector son las que se ensamblas en un PC de sobremesa, o sea interfaz PCI. Lo normal seria que todos los equipos se comercializaran con un conector para poder conectarle una antena externa, pero como ya sabéis la mayoría de las tarjetas con interfaz USB y PCMCIA no cumplen con este requisito, y menos las tarjetas Mini-PCI que se incorporan en los portátiles. Y por consecuencia intentamos siempre manipular este tipo de equipos con el riesgo que ello conlleva.
 Los tipo de conectores mas comunes (aunque no todos validos para el mudo wireless) son lo siguientes:
 1.- N - Navy (marina)
 Es el conector mas habitual en las antenas de 2.4 GHz (recordad que esta frecuencia es la especifica para el estándar 802.11b/g, para el estándar 802.11a nos encontramos con la 5Ghz. Dicho estándar esta en desuso y en el mercado la mayoría de dispositivos se centran en el 802.11g. Trabaja bien con frecuencias de hasta 10GHz. Es un conector de tipo rosca. Estos conectores tiene un tamaño apreciable y, a veces se confunden con los conectores UHF. La gran diferencia es que estos últimos (los UHF) no son validos para frecuencia de 2.4GHz. Es muy raro y inusual encontrase tarjetas y punto de acceso con este tipo de conectores, al contrario que en las antenas. Es muy fácil de trabajar con el. Y muy útil para el montaje propio de antenas caseras, sobre todo el de tipo chasis para ensamblarlo en el cuerpo de la antena, y su alojamiento para soldar un trozo de cobre grueso que habitualmente se usa para montar la parte activa mas importante de la antena.
2.- BNC (Bayonet Navy Connector)
 Conector tipo bayoneta de la marina. Es un conector barato utilizado en las redes ethernet del tipo 10Base2. Es un tipo de conector muy común, pero poco apto para trabajar en la frecuencia de 2.4GHz.
3.- TNC (Threaded BNC)
 Conector BNC roscado. Es una versión roscada del conector BNC. Este tipo de conector es apto para frecuencias de hasta 12GHz.
4.- SMA (Sub-Miniature Connect)
 Conector subminiatura. Son unos conectores muy pequeños, van roscados y trabajan adecuadamente con frecuencias de hasta 18GHz. Dentro de este tipo, nos encontramos con una subclase que son los llamados reverse (RP-SMA), y estos últimos son las mas utilizados en la mayoría de las tarjetas inalámbricas con interfaz PCI.
5.- SMC
 Se trata de una versión todavía mas pequeña de los conectores SMA. Son aptos para frecuencias de hasta 10GHz. Su mayor inconveniente es que solo son utilizables con cables muy finos (con alta perdida). El conector SMB es una versión del SMC con la ventaja que se conecta y desconecta mas fácilmente.
6.- APC-7 (Amphenol Precision Connector)
 Conector Amphenol de precisión. Se trata de un conector con muy poca perdida, y muy caro, fabricado por la empresa que lleva su nombre (Amphenol). Tiene la particularidad de que no tiene sexo.
 El motivo fundamental y principal por lo que se utiliza una antena externa no es alejar la antena del equipo wireless, sino poder conseguir aumentar el alcance de este equipo. Esto quiere decir que, para instalar una antena externa, no se debe pensar en unir la antena con el equipo wifi con un largo cable, sino todo lo contrario. El cable introduce perdidas en la señal que van desde los 0.05 a 1dB por metro y a precios desde 1 a 50 euros por metro (dependiendo de la calidad del cable). POr lo tanto, a menor longitud del cable, menores perdidas. Hay instalaciones que idealmente esto no es así, es decir necesitamos mas longitud de cable para poder salvar un obstáculo muy grueso , por ejemplo una pared de hormigón armado de grueso considerable. Pero evitarlo en la medida que se posible, y determinar el tipo de cable mas adecuado para vuestra instalación y por supuesto apropiado para vuestra economía.
 Por otro lado, el cable tiene soldado o crimpado un conector en cada extremo. Como los conectores pueden encontrase en cualquier tienda especializada, cualquiera puede fabricarse un cable con sus respectivos conectores, lo que habitualmente llamamos pigtail. Sin embargo es recomendable comprar el cable completo por sus conectores ya puestos. La razón viene dada por el siguiente motivo, soldar o crimpar conectores y/o cables es un arte y una ciencia que requiere contar con experiencias para obtener resultados óptimos.
 Para comprar el cable, hay que asegurarse que sea optimo para la frecuencia de 2.4GHz. Un cable puede ser muy apropiado para se utilizado en aplicaciones de televisión y video y no ser adecuado para el mundo wireless. Elegir el cable adecuado es casi tan importante como elegir la antena adecuada. Todos los cables introducen perdidas, pero unos introducen mas perdidas que otros.
 Quizás, los cables mas usados en la frecuencia de wireless (wifi) sean los de tipo de LMR. Estos son unos cables fabricados por Times Microwave Systems . Una alternativa son los cables Heliax fabricados por Andrew Corporation. Estos son unos cables que introducen muy poca perdida a la señal pero a cambio de un alto coste. También podemos interesarnos por los cables fabricados por Belden

El adaptador o pigtail.
 A diferencia de las antenas, los adaptadores de red wireless no suelen disponer de un conector tipo N, sino mas bien RP-SMA o ninguno. Esto no quiere decir que no se puede conectar directamente el cable de la antena (con conector N) a equipo wireless (con conector distinto, posiblemente propietario o ninguno). Por lo tanto, para permitir la conexión, es imprescindible conseguir un adaptador del conector tipo N al del tipo de equipo wireless (tarjeta inalámbrica). A estos adaptadores se les conoce mejor por su termino en ingles: pigtail (literalmente, trenza).
 En el mercado se pueden encontrar adaptadores de conectores para distintos modelos de equipo wireless. De hecho, existen fabricantes de equipos inalámbricos que también fabrican antenas externas. En estos casos, el propio fabricante, lógicamente tiene resuelta la conexión. También existen conectores adaptadores de conector N a otro tipo de conector. Si se tiene suerte, es posible que se encuentre el adaptador (pigtail) adecuado para la tarjeta de que se dispone.
 Si no se encuentra en el mercado el adaptador adecuado, la única solución que queda es fabricarse el adaptador. Normalmente, la fabricación de un adaptador (pigtail) consiste en utilizar un cable con conector N en un extremo y conectarlo al equipo wireless por el otro extremo soldándolo directamente en su contacto correspondiente. Para ello, es necesario abrir la tarjeta wireless, identificar las conexiones de la antena externa y realizar la soldadura sacando el cable por el sitio que se vea mas adecuado.

 Pero antes de lanzarse a fabricar un adaptador (pigtail), conviene saber que realizar esta operación no solo deja a la tarjeta wireless sin garantía, sino que se tiene el riesgo de producirle daños irreparables al equipo, en principio  esta operación solo debe ser realizada por personal especializado o con mucho arte para esto. Aunque esta claro que solo hay una manera de aprender, y solo es intentándolo.